
Redis Enterprise for Caching
Enable scalable, resilient, real-time applications

Solution Brief

© 2023 Redis

Redis Solution Brief / Redis Enterprise for Caching

2

© 2023 Redis

Digital is the new storefront for sales, an
instrument for innovation, and the frontline
for customer engagement. Customers
now primarily interact with, or experience
business services, through applications. And
they expect immediate responses. Real-time
applications start with fast data performance.

And that’s where Redis Enterprise can make a
huge difference.

THE CHALLENGE

Achieving speed
and scalability with
current databases
It isn’t easy to achieve the data performance needed to
match user expectations. Businesses cope with legacy
infrastructure, slow databases, and technical debt.
They regularly face cost, effort, and business continuity
constraints.

Data is the lifeblood of business applications. Yet the
organizations’ applications have to process large
datasets, which slows down performance – particularly
when the application has to access a database every
time it's needed.

The outcomes are painful and expensive:

•	 Latency: Customers expect applications to respond
Instantly, but many business applications are simply
too slow.

•	 Scalability: Many applications and databases
struggle to support the growth of digital business
services or to stand up to sudden demand spikes.

•	 Resilience: Because apps are at the forefront
of business downtime is a significant business
risk—and preventing downtime is a major
technology challenge.

•	 Technical debt: Businesses need to add
performance, scalability, and resilience without
enduring the pain and expense of redesigning a
system from scratch.

THE SOLUTION

Caching with Redis
Enterprise
An enterprise-grade caching layer makes a huge
difference.

A caching layer is a temporary storage location that sits
between an application and the database. It allows an
application to quickly access frequently needed data
without having to query the database every time. This
significantly enhances application performance and
scalability by improving response times and decreasing
the burden on databases.

This isn’t merely a technical matter. Caching offers a
business advantage, because it eases the demands
on the software development and operations staff.
Implementing enterprise-class caching avoids time-
consuming, resource-intensive, and expensive database
migrations or application refactoring. In other words:
This is a fast way to solve performance and availability
problems without asking the development staff to add
yet another project to their To-Do lists.

Built by the creators of Redis Open Source, Redis
Enterprise has over a decade of deployment in
challenging enterprise production environments.

Available on-premises, with Kubernetes, in hybrid
environments, or fully managed in Amazon Web
Services (AWS, Microsoft Azure, and Google Cloud
(GCP), Redis Enterprise helps thousands of huge
organizations maintain real-time performance with
scalability, cost efficiency, and high availability. It’s easy to
work with, too, which is why developers clamor to use it.

https://redis.com/cloud-partners/microsoft-azure/?utm_source=pdf-reforcaching-sb202304&utm_medium=referral
https://redis.com/cloud-partners/aws/?utm_source=pdf-reforcaching-sb202304&utm_medium=referral
https://redis.com/cloud-partners/aws/?utm_source=pdf-reforcaching-sb202304&utm_medium=referral
https://redis.com/cloud-partners/microsoft-azure/?utm_source=pdf-reforcaching-sb202304&utm_medium=referral
https://redis.com/cloud-partners/google/?utm_source=pdf-reforcaching-sb202304&utm_medium=referral
https://redis.com/cloud-partners/google/?utm_source=pdf-reforcaching-sb202304&utm_medium=referral

Redis Solution Brief / Redis Enterprise for Caching

3

© 2023 Redis

Common Redis Enterprise
caching patterns
The appropriate caching pattern to deploy depends
on business and application needs. Redis Enterprise
supports whichever pattern makes sense for you:
cache-aside, query caching, write-behind, write-
through, and cache-prefetching.

Which should you use? The criteria include such
matters as whether an entire dataset or a subset needs
to be cached; if the workload is read-heavy or write-
heavy; and the importance of data consistency.

When to use common Redis Enterprise caching
patterns:

•	 Cache-aside: to speed up reads typically used with
least-recently-used (LRU) eviction to reduce the
costs of caching all the data when cache-misses
are acceptable.

•	 Query caching: when there is a need to speed
up high-latency commonly used queries with
minimal overhead

•	 Write-behind caching: to speed up write-heavy
workloads without forcing the application to
manage multiple data source connections

•	 Write-through caching: to speed up reads when
consistency without forcing the application to
manage multiple data source connections

•	 Cache prefetching: for continuous replication
between write-optimized and read-optimized
workloads by offloading reads from the system
of record

Real world example: A featured product
on a retail site. The first time the product
is featured, details (image, price, and
metadata) are loaded from the system
of record and the application would then
cache details into Redis Enterprise to serve
the same data to a high volume of users
with low latency.

Real world example: When speeding
up often-repeated SQL queries or
when upgrading legacy applications to
microservices environments without
replatforming databases

Real world example: Processing a
financial transaction in Redis Enterprise
and keeping financial records and
transactional data in cold storage for
auditing or reporting purposes

Real world example: When businesses
need to cache but absolutely cannot lose
data, especially common with critical retail
customer data or financial transaction data

Real world example: Cache-prefetching
user profiles, allowing frequent writes
to occur directly in the database, while
preventing preloading data into Redis
Entreprise to support a high volume of reads

Redis Solution Brief / Redis Enterprise for Caching

4

© 2023 Redis

Cache-aside

When to use it: To speed up database reads.
Cache-aside is typically used with least-recently-used
(LRU) eviction.

Real world example: Consider the presentation
of a featured product on a retail website. The first
time the product is featured, the e-commerce
application loads the product details (image,
price, and metadata) from the system of record.
The application then caches details into Redis
Enterprise. The result: the website can serve the
same data to a high volume of users with low
latency.

Description: The most common way to use Redis
Enterprise as a cache is cache-aside. Data is
loaded into the Redis Enterprise cache only when

necessary – hence it sometimes is called lazy
loading.

Cache-aside is a common choice for read-
heavy applications when a subset of a dataset
needs to be cached, and when cache misses
are acceptable. With a cache-aside pattern,
the application handles all data operations, and
it directly communicates with both the cache
and database. The database and cache do not
communicate directly with each other.

How cache-aside works with
Redis Enterprise

1.	 The application looks into the Redis Enterprise
cache to retrieve data
•	 If the data is found (called a cache hit), Redis

Enterprise delivers the data to the application.
This happens with sub-millisecond latency

•	 If the data is not found (a cache miss), the
application retrieves the data from the
database. This happens with higher latency.

2.	 The application then writes data to Redis
Enterprise so it is available in the cache for
future retrieval.

2

1Application

Database

Redis Solution Brief / Redis Enterprise for Caching

5

© 2023 Redis

Query caching

When to use it: To speed up high-latency commonly-
used queries

Real world example: Bringing legacy applications
up-to-date is a painful project to contemplate;
nobody wants to touch dusty, finicky code even
when older systems have to interact with new
software. Query caching lets you leave the legacy
system in place, and connect it to newer systems
with faster SQL data performance.

Description: Use query caching to improve query
performance in order to improve response times
for data queries.

Query-caching is a unique implementation of the
cache-aside pattern, devise to speed up (often
repeatable) SQL queries against a slower system
of record. With query caching, you don’t need to
transform data into another data structure. From
the application’s point of view, it’s just a database
query, where the value returned comes from the

cache instead of a deliberate database read. The
query is used as the key and the serialized result
set as the value.

One common use is among businesses that
are migrating to microservices. Using query
caching is common when businesses migrate
to microservices without replatforming current
systems or starting over from scratch. One element
in such a solution is Redis Smart Cache. It enables
developers to quickly deploy a standardized query
cache to simplify management and operations –
and you don’t need to redesign an application. Just
add the library as a new dependency, with your
Redis endpoint as its property file. The library also
enables analytics on all queries flowing through a
Java Database Connectivity (JDBC) driver to the
system of record.

How query-caching works
with Redis Enterprise

1.	 When an application wants to query a
database, it sends a SQL query to a Redis
Enterprise cache.

2.	
A.	 If the data is found (called a cache hit),

Redis Enterprise delivers the data to the
application. This happens with sub-
millisecond latency

B.	 If the data is not found (a cache miss),
the application retrieves the data
from the database. This happens with
higher latency.

2B

1

2A

https://github.com/redis-field-engineering/redis-smart-cache/?utm_source=pdf-reforcaching-sb202304&utm_medium=referral

Redis Solution Brief / Redis Enterprise for Caching

6

© 2023 Redis

Write-behind caching

When to use it: To speed up reads when consistency
is critical, without forcing the application to manage
multiple data source connections

How write-behind caching works
with Redis Enterprise

1.	 The application writes data to the Redis
Enterprise cache, not directly to the database.

2.	 After the data is stored in Redis Enterprise,
Redis Enterprise asynchronously writes to the
database using integrated CDC.

Application
Redis Integrated CDC

Backend DB

1

2

Real world example: Some industries require
databases for additional record-keeping, such as
medical and financial firms. But writing to multiple
databases per transaction inhibits write response
times and can lead to application latency. Write-
behind caching is a good option for, say, when you
need to process and keep financial records and
transactional data in cold storage for auditing or
reporting purposes.

Description: Some applications access existing
information far more often than they store or
update transactions. Cache-aside and query
caching are good for those scenarios. However,
when an application performs a lot of writes to the

database and those transactions need to happen
quickly, write-behind caching is a better choice. It
improves write performance and eases application
development since the application writes to only
one place: Redis Enterprise. Redis Enterprise then
asynchronously updates the backend database.

You can use Redis Enterprise’s integrated Change
Data Capture (CDC) alongside the cache to
identify changed data in the cache, and ensure
that data is eventually updated in the underlying
database.

Redis Solution Brief / Redis Enterprise for Caching

7

© 2023 Redis

Write-through caching

When to use it: To speed up write-heavy workloads
without forcing the application to manage multiple
data source connections.

How write-through caching works
with Redis Enterprise

1.	 The application writes data to the Redis
Enterprise cache.

2.	 Redis Enterprise ensures that the system of
record is updated synchronously to maintain
consistency between Redis Enterprise and
system of record.

Real world example: Some businesses use
“mission critical” as a buzzword. But for many, it’s a
stark statement of fact – and compromises are not
an option. Consider write-through caching when
you need to cache but absolutely cannot lose
data, such as with critical retail customer data or
financial transaction data.

Description: Write-through cache strategy is
similar to the write-behind approach, as the
cache sits between the application and the
operational data store. The difference is that, with
write-through caching, the updates are done

synchronously. An application updates the cache,
and the cache takes care of updating the database
immediately. The application can then read
data directly from Redis Enterprise with latency
measured in sub-milliseconds.

The write-through pattern favors data consistency
between the cache and the data store. It relies
on event-driven functionality to implement data
flows between systems. Redis has the ability to
ensure that a database is updated synchronously
to maintain consistency between the cache and
system of record.

1 2

Redis Solution Brief / Redis Enterprise for Caching

8

© 2023 Redis

Cache prefetching

When to use it: To deploy continuous
replication between write-optimized and read-
optimized workloads by offloading reads from the
system of record.

Real world example: Applications rely on
user profiles to identify individuals throughout
the duration of their sessions, beginning with
authentication. These user profiles are read from
frequently but rarely change. Cache-prefetching
user profiles for applications, allows infrequent
writes to occur directly in the database, while
preloading data into Redis Enterprise to support
a high volume of reads. This leads to more
responsive applications, increased scalability,
and lower costs.

Description: Cache prefetching is used for
continuous replication between write-optimized
and read-optimized workloads. With this caching
pattern, writes from the application occur directly
to the database. Data is replicated to Redis
Enterprise as it changes in the system of record,
using integrated CDC, so it arrives in the cache
before it needs to be read by the application.

How cache prefetching works
with Redis Enterprise

1.	 The application writes data directly to its
original system of record.

2.	 Integrated CDC replicates data to the
Redis Enterprise cache as it changes
in the system of record. The net effect
is that the data arrives before the
application asks for it in order to perform
a database read.

3.	 The application then reads directly from
Redis Enterprise.

1 3

2

Redis Integrated CDC

Application

Redis Solution Brief / Redis Enterprise for Caching

9

© 2023 Redis

Cache with confidence
Many software projects start as grassroots applications.
With success, they grow into extensive systems on
which thousands or millions rely. As the number of
users, volume of data, and geographic locations
increase, so do issues with cost, scalability, operations,
and system availability.

Most caches lack the functionality to alleviate these
issues. Developers spend time spinning their wheels
or reinventing those wheels, which is not a good use
of their time – particularly when that energy is better
spent on improving the innovative software. The cache
provided by Redis Open Source is great, and we’re
proud of it – but at some point, it makes sense to invest
in tools built by those with subject matter expertise.
(That would be us.)

Failing to upgrade to a better caching solution can
hamper business growth, lead to data loss or poor
application performance, and incur the opportunity
costs of significant effort and expense going toward
Redis operations. Upgrading to an enterprise-grade
cache is critical to enabling and supporting business
growth.

We built essential caching functionality – (so you
don’t have to)
While caching is a simple enough concept, in practice
it can be very complicated. Businesses need to manage
time to live (TTL), data consistency, and scaling, as well
as many other variables across large, complex data
ecosystems.

Redis Enterprise is the only enterprise-grade cache that
provides:

•	 Flexibility: A single data platform that seamlessly
works alongside existing infrastructure, on premises,
in hybrid environments, or in any cloud

•	 Scalability: Effortless scaling that maintains sub-
millisecond latency at millions of operations per
second

•	 Resilience: Battle-tested availability with a
five-nines SLA that excels in supporting mission-
critical applications

•	 Cost efficiency: Storage tiering can save up to 80%
on infrastructure costs when caching large datasets

•	 Simplicity: Works alongside existing architecture
to support a variety of caching patterns—without
re-architecting or replatforming—and a well-earned
reputation for being blissfully easy to work with

Redis has solved just about every type of caching
problem out there. As we developed this expertise, we
built functionality that makes caching easier for our
customers. With Redis Enterprise, we handle caching’s
hidden complexity so you don’t have to deal with it
yourself.

You have other things to do. Let us take care of this.

When you cache with Redis Enterprise, you can:

•	 Mirror data between your cache and system of
record: With integrated CDC, you can identify and
deliver changes in real time to Redis Enterprise from
asystem of record

•	 Simplify caching in the most complex
environments: Use Redis Smart Cache to
quickly and seamlessly deploy and standardize
numerous query caches in complex microservices
environments—without the need to change
application code to support a variety of caching
patterns—without re-architecting or replatforming—
and a well-earned reputation for being blissfully easy
to work with

•	 React to events in Redis Enterprise:
Use event-driven functionalit for write-through
caching and improve application performance while
guaranteeing that all changes are written to your
backend databases

Redis Solution Brief / Redis Enterprise for Caching

10

© 2023 Redis

Learn more
Dive deeper into caching. Explore common caching patterns, how
they work, when to use them, and how they can benefit you. Read
the definitive guide to Caching at Scale with Redis.

https://redis.com/docs/caching-at-scale-with-redis/?utm_source=pdf-reforcaching-sb202304&utm_medium=referral

